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The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are 
studied. A governing system of a linear partial differential equation and boundary 
conditions is derived based on a linearization of the equations for viscous compressible 
flow. This system reduces to the Onsager pancake model if the effects of curvature 
are neglected. Approximations to the solutions of the governing equations with and 
without curvature terms are obtained via a finite-element method. Two examples are 
considered: first where the flow is driven by a thermal gradient at the wall of the 
centrifuge, and then for the flow being driven by the introduction and removal of 
mass through the ends of the centrifuge. Comparisons of the results obtained show 
that, especially for the second example, the inclusion of the terms due to curvature 
in the model can have an appreciable effect on the solution. 

1. Introduction 
Over the past few years, increasing interest has been shown in determining the flow 

inside a gas centrifuge. This interest is mostly due to the facts that centrifugation 
has become a viable, energy-efficient method for enriching uranium in its fissionable 
isotope and that the separative efficiency of a gas centrifuge is determined largely 
by the dynamics of the fluid flow within the centrifuge (Von Halle 1977; Hoglund, 
Shacter & Von Halle 1979). One of the most popular models for describing this 
internal flow consists of the Onsager ‘pancake ’ equation and the Carrier-Maslen 
boundary conditions. For a full derivation and discussion of this formulation see Wood 
& Morton (1980) and Babarsky & Wood (1982). These equations have been 
approximately solved by a variety of techniques, including eigenfunction-expansion 
methods (Wood & Morton 1980) ; finite-difference methods (Viecelli 1983) ; and 
finite-element methods (Gunzburger & Wood 1982 ; Gunzburger, Wood and Jordan 
1983). 

The two main assumptions invoked in deriving the Onsager equation are that the 
flow field is a small perturbation about an isothermal solid-body rotation and that 
the rotational speed of the centrifuge is high enough so that the bulk of the fluid is 
found in the region adjacent to the outer wall of the centrifuge. Mathematically, the 
first assumption enables one to linearize the governing equations, i.e. the equations 
of viscous compressible flow, while the second assumption allows for the neglect of 
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terms that are due to the curvature of the outer wall of the centrifuge. The utility 
of these assumptions in simplifying the mathematical description of the flow field is 
obvious. Linear equations are generally easier to solve than nonlinear ones, and 
neglecting the effects of curvature also greatly simplifies the governing system. The 
ability to approximate the solution of the model equations by eigenfunction-expansion 
methods is greatly facilitated by these simplifications. Recently, Jung (1983) has 
reported attempts to construct sets of expansion functions while retaining curvature 
terms in the model equations. 

Assumptions such as those described above are usually justified a priori by 
observations or intuition. A posteriori, they are justified by comparisons of data 
obtained through the use of these assumptions with experimental data and/or data 
obtained from more complicated models which do not involve the assumptions. It 
is the latter type of comparison, in the context of the curvature effects, which is of 
interest to us here. Specifically, we wish to explore the differences between solutions 
obtained with and without neglecting the effects of curvature. Fortunately, this 
comparison can be greatly facilitated by the use of purely numerical techniques. In  
fact, as is described in this paper, finite-element approximations which include the 
effects of curvature may be obtained just as easily as when curvature effects are 
neglected. 

The plan of the remainder of the paper is as follows. I n  $2 we present a detailed 
derivation of the linear governing equations in which curvature terms have been 
retained. The presentation here is based on that of Maslen (1979). I n  $3  we discuss 
the numerical techniques employed in the approximation of the solution of the model 
equations derived in $2. Comparisons of solution with and without curvature effects 
are presented in $4, and some concluding remarks are made in $ 5 .  

2. The Onsager-Maslen model 
2.1. The Onsager-Maslen equation 

We assume that the centrifuge is a right circular cylinder of radius a and length L. 
Let ( r , O , z )  be cylindrical coordinates with the origin fixed at the bottom of the 
cylinder and on the axis of rotation, and with the z-axis aligned along that axis. If 
the centrifuge rotates at an angular velocity 52 then 

u=O, v=52r ,  w = O ,  1 

T = To = constant, 

constitute a solution of the equations of compressible viscous flow corresponding to 
an isothermal solid-body motion of the fluid. I n  (2.1), (u,  v, w) denote respectively 
the ( r ,  0, 2)-components of velocity, p the pressure, p the density, T the temperature, 
R the specific gas constant, TO the uniform gas temperature, p ,  the pressure a t  the 
wall of the cylinder, and A = a52/(2RT,):. 

We will make five assumptions concerning the flow in the centrifuge. These are: 
( i )  the flow is steady; 
(ii) the flow is axially symmetric; 
(iii) the flow is a small perturbation from the isothermal solid-body rotation 

described in (2.1); 
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(iv) outside of the Ekman layers adjacent to the ends of the cylinder, the effects 
of axial diffusion may be neglected ; 

(v) the effects of radial diffusion of radial momentum may be neglected. 
For a detailed discussion of these assumptions see Wood & Morton (1980). 

Using these assumptions, the equations of conservation of mass, momentum and 
energy and the equation of state reduce to (Wood & Morton 1980; Babarsky & Wood 
1982) 

(rpu’),+ rpwi = 0, (2.2) 

2Opv’ + r02p’  = p i ,  (2.3) 

p(r2v i -  rv‘), = 20r2pu’, (2.4) 

p’ =pRT+p’RT,. (2.7) 

I n  (2.2)-(2.7), (u’, v‘, w’) denote the ( r ,  0, 2)-components of the perturbed velocity field 
and p’, p‘, T are the perturbed density, pressure and temperature respectively. I n  
the derivation of (2.2)-(2.7), we have also assumed that the viscosity p and thermal 
conductivity k are functions of temperature only, and that the bulk viscosity 
vanishes. Furthermore, we have assumed that there are no sources of mass, 
momentum and energy present in the flow field. 

Eliminating u‘ between (2.4) and (2.6) yields 

Op(r2vi-rv’),  = -2k(rTi),. (2.8) 

We may also eliminate the pressure between (2.3) and (2 .5 )  to yield 

where we have also used (2.7) and introduced the auxiliary variable 

T 2v‘ $ = _-__ 
T, O r ‘  

(2.10) 

Integrating (2.8) and setting the integration constants to zero to satisfy boundedness 
conditions a t  the axis r = 0 yields 

Op( r2v~- rv ’ )  = -2k(rT;).  (2.11) 

Using (2.6), (2.8), (2.10) and (2.11), we may then show that 

(2.12) 

where S = p02a2/4kTo.  
Equations (2.2), (2.9) and (2.12) form a system of three equations for u‘, w’ and 

$. We rewrite these equations in dimensionless form by letting T = r /a ,  y = z /a ,  
u = u’/Oa, w = w’/Oa, v = v ‘ /Or ,  p = p‘/p,, p = p’/p,  and T = TIT,, where 
pw = p,/RT, is thr density a t  the vertical wall of the cylinder of the flow described 
by (2.1). In terms of these dimensionless variables, (2.2), (2.9) and (2.12) are 
respectively given by 

(TPO 4 7  + TPO wy = 0, (2.13) 

(2.14) 
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and 

where Re = pwSZa2/,u is the Reynolds number, 4 is now defined by 

and 
4 = T-2v, 

P 
P W  

po = - = exp{-A2(1-y2)} 

(2.15) 

(2.16) 

(2.17) 

is the dimensionless density of the flow described by (2.1). We now introduce the radial 
variable z = A2(  1 - r2 ) ,  which measures the distance from the wall of the cylinder in 
‘scale heights’, i.e. e-folding heights of the ambient density, which by (2.17) is now 
given by po = exp (-x). The system of equations (2.13)-(2.15) is now transformed 

(2.18) to 
- 2A2(r e-” u ) ~  + e-” 7 f i y  = 0, 

Re 4 y  = ~A6[eX(r2Wx)x1x (2.19) 

and 

where 

(2.20) 

(2.21) 

Our next goal is to reduce this system of equations to a single partial differential 
equation. The first step in this reduction is to define the stream function + by the 
relations 

and 2A2$, = -e-” w, (2.23) 

so that (2.18) is identically satisfied. Substituting (2.22) and (2.23) into (2.19) and 

(2.24) (2.20) yields 

+ =-re-”  U (2.22) Y 

Re 4 y  = - 16A* (eX(r2(eX$x)x)x)x 

and 

Eliminating 4 from these last two equations then yields 

We introduce the Onsager ‘master potential’ x defined by 

+ = -2A2xX. 

Substituting (2.27) into (2.26) yields 

(2.26) 

(2.27) 

(2.28) 

Integrating this last equation with respect to x and assuming that x and all its 
derivatives are negligible for large x, we have that 

(2.29) 
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where B = Re/4A6. Equation (2.29) is the Onsager-Maslen equation. If we set 7 = 1 
wherever it appears algebraically in (2.29) we obtain the Onsager 'pancake' equation 
(Wood & Morton 1980; Babarsky & Wood 1982). Thus the effects of curvature are 
included through the explicit appearance of 7 in the coefficients of the partial 
differential equation (2.29). 

The differential equation (2.29) holds in the interior of the centrifuge except near the 
ends of the cylinder y = 0 and y = L / a  and a t  'large' distances from the wall of the 
cylinder x = 0. In  narrow Ekman layers near the ends of the cylinder, axial-diffusion 
effects become important, and the assumption through which this effect was 
neglected is no longer justified. At large distances from the wall of the centrifuge the 
gas becomes rarefied and the equations of motion, from which (2.29) was derived, 
no longer adequately model the flow field. These observations are considered in 
greater detail in $52.2 and 2.3, where we derive the boundary condition that the 
master potential x must satisfy. 

2.2. Radial boundary conditions 

We now examine the boundary conditions that the master potential x must satisfy 
at the wall of the cylinder x = 0 and a t  the 'top of the atmosphere' x = xT, where 
xT is a distance in scale heights a t  which the gas becomes rarefied. I n  actual 
computations, the value of xT is chosen by performing a series of calculations with 
different values of xT, and then observing a t  what value of xT the solutions, as 
functions of xT, cease to appreciably change. If this fails to occur, as in cases of low 
rotation speeds, then xT is set equal to the value of x a t  the axis, i.e. xT = A'. 

At x = xT we assume that u = v, = w, = T, = 0 (Wood & Morton 1980). Equations 
(2.24), (2.28) and the condition w, = 0 easily yield 

 ex^,,), = 0 at x = xT. (2.30) 

Equation (2.23) and the condition u = 0 yield 4, = 0 a t  x = xT, or +(xT, y )  = 0, where 
the integration constant has been set to zero by setting the stream function to zero 
at x = xT. Then, from (2.27), 

x, = 0 a t  x =  xT. (2.31) 

Equations (2.25), (2.28) and (2.29) combine into 

Re 74$yx = - 32Al0B2(1 + Sy2) x,,. 
Integrating with respect to y results in 

Rer4[$,(x, y ) - $ , ( ~ o ) I  = -32A1OB2[1 +S7'1 [X,(Z, y)-xxy(x ,O)l .  (2.32) 

But (2.16) and the condition v, = T, = 0 imply that $,(xT, y )  = 0. Therefore evalu- 
ating (2.32) a t  x = xT yields that xy(xT, y )  = k ,  for some constant k,. Again integrat- 
ing with respect to y ,  we have that x(xT, y )  = k ,  y+ k, for some constants k, and k,. 
Without loss of generality we may set k, = 0 because all variables of interest depend 
on derivatives of the master potential. We may also take k, = 0 since all variables 
of interest except $, depend on x-derivatives of x, and by (2.32) $, depends on the 
difference xu(", y )  -xy(x, 0) ,  which is again independent of k:. (See $2.4 for a listing 
of the explicit dependence of physically interesting variables on the master potential 
x.) With k,  = k, = 0, we then have 

x = O  a t  x = x T .  (2.33) 
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At the wall of the cylinder x = 0, we assume that the velocity perturbation 
vanishes, i.e. u = v = w = 0, and that the temperature T is prescribed, i.e. 
T(0, y)  = O(y). Equations (2.24) and (2.28) and the condition w = 0 yield 

x,. = 0 at x = 0. (2.34) 

Equations (2.23) and the condition u = 0 yield $.,(O, y)  = 0. Integrating with respect 
to y yields $(O, y) = k, for some constant k,. Since we have set the stream function 
equal to zero, k, represents the net mass flow through the bottom end of the cylinder. 
For simplicity we assume that k, = 0, and thus we will be restricted to problems that 
have no net mass flow through the bottom of the cylinder. Then $(O, y)  = 0, or, using 

2, = 0 a t  x = 0. (2.35) (2.281, 

Equations (2.25) and (2 .28)  yield 
Re 4 y  = 32A10(e5(r2(e5Xs,)s)s)z, (2.36) 

and (2.16) and the conditions v = 0 and Ty = Oy(y) yield that @,(O,y) = O(y). Then 
evaluating (2.36) at x = 0 yields 

(2.37) 

where O(y) is the prescribed dimensionless temperature along the wall. 
Equation (2.30), (2.31), (2.33)-(2.35) and (2.37) are the six boundary conditions 

which the master potential x must satisfy a t  the two fixed radial positions x = 0 and 
x = xT. That there are six such boundary conditions needed is to be expected because 
equation (2.29) is a sixth-order differential equation with respect to x. 

2.3. The Carrier-Maslen boundary conditions 
To complete the specification of the problem, we need to determine the boundary 
conditions a t  the top and bottom of the cylinder. Since, in the derivation of (2.29), 
we have neglected all axial-diffusion terms, that  equation does not adequately 
describe the flow in the Ekman layers adjacent to  the top and bottom of the cylinder. 
Thus we view (2.29) as the governing equation outside the Ekman layers, and the 
task a t  hand is to derive equations that model the flow in the Ekman layers. The 
derivation below again follows that of Maslen (1979). 

The starting point is, again, the equations of steady viscous compressible flow. We 
linearize these equations about the solid-body rotation described by (2.1). Subse- 
quently, we apply standard techniques of boundary-layer analysis to conclude that 
Ekman layers have a thickness of order l/(Re)t and to derive a system of equations 
which hold in the Ekman layers. I n  terms of the dimensionless variables, these 
equations are given by (2.18), 

qRe(2e-”v”+p”+jjx)= -ayu, (2.38) 

(2.39) 2 Re e-” 6 = rfiuY, 
(2.40) 

(2.41) 

and 17 = e-.T+fi, (2.42) 
where y is given by (2.22), and where (-) denotes a flow variable in the Ekman layer. 
Equation (2.16), (2.39) and (2.41) may be combined to yield 

y$uu = - 4 Re e-x .ii( 1 + Sy2). (2.43) 
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Equations (2.16), (2.38), (2.40) and (2.42) may be combined to yield 

7 Ree-x4y = Gyyy. (2.44) 

Let us focus for the moment on the vicinity of the bottom of the cylinder, i.e. y = 0. 
The solution of (2.43) and (2.44), which remains bounded as y increases, is readily 
found to  be 

22 = A(4fl(Y) +B(z)f , (y)  (2.45) 

and (2.46) 

where A ( x ) ,  B (x )  and C ( x )  are arbitrary functions, i = ( -  I);, 

f l ( Y )  = exPl-(i/42Yl, f , ( Y )  = exp[-(-iiP)h!I (2.47) 

and p = 2Ree-x(1+S72)i. (2.48) 

Also, using (2.23) and (2.45), we may deduce that 

(2.49) 

where D(x)  is again an arbitrary function. As (I2e)by-t co, the Ekman variables &x, y)  
and ‘(x, y) must match the values of the corresponding outer variables $(x, y) and 
$(x,y) as y+O. Then, from (2.46) and (2.47) we have that C(x)  = $(x,O) and 
D ( x )  = $(x, 0) respectively. Now, by (2.47),f1(0) = f , ( O )  = I ,  so that, if we evaluate 
(2.45)-(2.47) a t  y = 0, we have that 

F ( z )  = A ( z )  + B ( x ) ,  

and 

where (-)= denotes a prescribed value a t  the bottom end of the cylinder. The functions 
A(%) and B ( x )  may be easily eliminated from these last three equations to yield, with 
the help of (2.48), 

4~,1-~[Ree~]? [I +~q”lf  ($(x, 0 )  - F ( x ) ]  +27-1[1+~72]B~~+$(x ,  o ) - - F ( x )  = 0. 
(2.50) 

Similarly, we may derive the analogue of (2.50) that is valid a t  the top of the 
cylinder y = yT = L/a .  If 0 denotes a prescribed value a t  the top of the cylinder, 
this relation is given by 

47-,[Re ex$ 11 + S7219 ($(x, yT) - $(x)] + 27-1[1 + S7212 U ( X )  + $(x, yT) - $(x) = 0. 
(2.51) 

Equations (2.50) and (2.51), which are known as the Carrier-Maslen boundary 
conditions, relate the interior variables $ and $ to the prescribed boundary conditions 
a t  the ends of the cylinder. Our remaining task is to recast (2.50) and (2.51) in terms 
of the master potential x defined by (2.28). 

Equations (2.26) and (2.28) may be combined to yield 

F L M  140 
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Integrating with respect to  x and using the radial boundary conditions $ x ( ~ T ,  y) = 0 
and xy(xT, y)  = 0 (see $2.2) then yields 

(2.52) 

Differentiating (2.50) with respect to x and then using (2.52) evaluated at y = 0 to 
eliminate $Jx, O) ,  and (2.28), also evaluated a t  y = 0, to eliminate +(x, 0) yields 

B2y-4[l +Sy2]xy(x, 0 ) + 2 A B { ~ - ~ [ l  +Sy2]fe :x~2(~ ,0)}x  

(2.53) 
Similarly, from (2.51) we may derive the relation 

~ ~ 1 1 - ~ [ 1  + 8 T 2 ] x y ( ~ ,  Y T ) - ~ A & { ~ - ~ [ I  +Sy2]ietxXs(x, Y T ) } ~  

Equations (2.53) and (2.54) are the two boundary conditions that the master 
potential x must satisfy a t  the ends of the cylinder. They relate linear combinations 
of the derivatives of x to the functions g*(x) ,  which in turn are determined by the 
prescribed boundary conditions on the flow variables a t  the ends of the cylinder. Note 
that by setting y = 1 wherever i t  appears algebraically in (2.50), (2.51), (2.53) and 
(2.54) yields the Carrier-Maslen conditions that hold when the effects of curvature 
are neglected (Wood & Morton 1980). 

2.4. Summary of the problem 
We have now completed the formulation of the problem for the master potential x. 
First, in the region D = {x, y :  0 < x < xT, 0 < y < yT}, x satisfies the differential 
equation (2.29). At x = xT and for 0 < y < yT, x satisfies the boundary conditions 
(2.30), (2.31) and (2.33), while, at x = 0 and for 0 < y < yT, the boundary conditions 
are given by (2.34), (2.35) and (2.37). At y = 0 and for 0 < x < xT, x satisfies the 
boundary condition (2.53), while, at y = yT and for 0 < x < xT, the boundary 
condition is given by (2.54). 

In  $ 3 we will discuss how to obtain finite-element approximations for the master 
potential x. Once x, or an approximation of x, has been obtained, some variables of 
physical interest can be obtained by differentiation. I n  particular, from (2.23), (2.24) 
and (2.28) we have that the dimensionless perturbation stream function, radial 
velocity and axial velocity are given respectively by 

+ = -2A2xX, u = 2A2xXy and w = 4A4xXx (2.55), (2.56), (2.57) 
To obtain the auxiliary variable $, we would integrate (2.36) and (2.52). Of course, 
by (2.16), $ is merely a linear combination of the dimensionless perturbation 
temperature T and azimuthal velocity v. I n  order to recover T and w themselves, we 
must solve for another auxiliary variable H, which is defined by 

H = T+2Sy2v. (2.58) 
A differential equation for H is easily obtained from the linearized equations of 

motion, and is given by (Maslen 1979) 

(2.59) 
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The boundary conditions that H must satisfy are also easily derived. They are given 

by H,=O a t  x =  xT, 
for 0 < y <yT, 

H = 8(y) a t  x = 0 

and H = H(x) = T(z)+2Sq2V(x) for 0 < x < xT, 

a t  the top and bottom of the cylinder. Note that the problem for H is a second-order 
elliptic boundary-value problem. 

We will not consider the H-problem any further in this work, as we are primarily 
interested in the stream function $. The reason for this is that the separative 
properties of the flow can be determined from @ alone (Von Halle 1977; Hoglund et 
al. 1979). However, note that if one is interested in the thermal properties of the flow, 
then one must solve for H as well as x. Finally, we note that the perturbation pressure 
p and density p may be obtained from (2.3), (2.5) and (2.7). 

3. The Galerkin finite-element algorithm 
We wish to reformulate our boundary-value problem for the master potential x 

into a Galerkin formulation. This is accomplished by standard procedures (Strang 
& Fix 1972), which consist of the following steps: 

(i) multiply (2.29) by a smooth function f that satisfies the boundary conditions 
f =  f s  = 0 a t  x = xT and 2, = fzx = 0 a t  x = 0; 

(ii) integrate the result over the domain D = {x,y: 0 < x < xT, 0 < y < yT}; 
(iii) integrate the term involving x-derivatives by parts three times and the term 

(iv) use the boundary conditions (2.30), (2.37), (2.53) and (2.54) for x and the above 
involving y-derivatives by parts once ; 

conditions for f to evaluate the resulting boundary integrals. 
These steps yield 

YT 
- {sfly= yT - gfl, - 0 1  dx + jo ( f f ) l y  - 0  dx = 03 

(3.1) 

where L3X = (eZxss)z. (3.2) 
The next steps are given by: 

( i )  integrate the second and third integrals in (3.1) by parts with respect to x ;  
(ii) use the boundary condition f = 0 a t  x = xT and the boundary condition (2.35) 

for x, evaluated at  y = 0 and y = yT, in order to evaluate the resulting boundary 
integrals. 
These steps result in B(X> 2) = F(f)> (3.3) 
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Our approximate solution is defined by first choosing a finite-dimensional finite- 
element space of functions, which we denote by S”, and then seek a X” E S” such that 

B(xh, f h )  = F(f”) for all €Sh. (3.6) 
The functions in the space 8, should satisfy the following requirements : 

continuously differentiable with respect to y ; 
(i) they must be twice continuously differentiable with respect to x and once 

( i i )  they must satisfy the boundary conditions (2.31) and (2.33)-(2.35). 
These requirements are necessary in order for the integrals in (3.6) to be well-defined 

and for the approximate solution 2” to satisfy the correct boundary conditions. Note 
that the remaining boundary conditions, namely (2.30), (2.37), (2.53) and (2.54), are 
automatically accurately, although not exactly, satisfied by any solution of (3.6). 

The particular functions that we utilize are products of piecewise-cubic spline 
functions of x and piecewise-linear functions of y. For all details concerning the 
derivation, analysis and implementation of the finite-element algorithm see Eastham 
(1981), Gunzburger & Wood (1982), Gunzburger d u1. (1984) and Jordan (1983). Here 
we merely point out that  the associated matrix problem that results from the 
finite-element discretization is symmetric and positive-definite. These are true 
whether or not the effects of curvature are retained in the derivation of the model. 
Also we note that the approximate solutions for the master potential x”, the 
perturbation streamfunction +h and the perturbation axial velocity wh are all 
second-order accurate, where of course @” and wh are obtained from X” by 
differentiation, i.e. by (2.55) and (2.57). On the other hand, the approximation uh 
to the perturbation radial velocity obtained through (2.56) is only first-order accurate 
(for details see Eastham 1981). 

4. Comparisons of models with and without curvature effects 
A computer code was developed to implement the algorithm of $3. The code was 

written in such a way that it can be used in conjunction with the pancake model or 
with the present model by making the choice 

1 for pancake model, 

(4.1) 
r(x) = [[I-$,: for model with curvature terms. 

Other than in the choice of this function, the code is identical for both models. 
Here we present numerical results for two different methods of inducing a 

countermrrent flow in the centrifuge. I n  the first mcthod, thc perturbed flow is 
induced by a linear tempcrature distribution along the cylinder wall, with the 
tcmpcraturc a t  the two ends of the cylinder being constant and equal to the 
corresponding value at  thc wall. The end-to-end temperature diRercnce is 1 K, with 
thv hottcr end a t  the bottom. This case was studied by Wood & Morton (1980) and 
Gumburger 8: Wood (1982). I n  thc second method, the perturbed flow is induccd by 
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Length L 335.3 cm 
Radius a 9.145 cm 
Wall pressure p ,  13.3 kPa 
Ambient temperature T, 300 K 
Peripheral speed Qa 400, 500, 700 m/s 

TABLE 1. Centrifuge parameters 

injecting and removing mass through the ends of the cylinder. A uniform axial mass 
flux of unit amplitude is introduced through the interval 7 < x < 8 a t  the end y = 0 
and the interval 1 < x < 2 a t  the end y = yT. A like amount of mass flux is removed 
through the interval 1 < x < 2 a t  the end y = 0 and the interval 7 < x < 8 a t  the end 
y = yT. I n  this case isothermal boundaries are assumed. This type of countercurrent 
drive has been studied by Soubbaramayer (1979) and Gunzburger & Wood (1982). 

The centrifuge parameters used in the calculations are described in table 1. These 
represent a hypothetical centrifuge which has been previously considered by May 
(1977), Durivault & Louvet (1976), Wood & Morton (1980), Gunzburger & Wood (1982) 
and Gunzburger et al. (1984). 

In all calculations a non-uniform grid spacing was employed. The distribution of 
grid points was determined by the transformations x = 2 / x T  and y = yT sin2 (ny/2yT), 
with a uniform spacing in the 2- and y-coordinates. Calculations for the linear wall- 
temperature drives were performed using a 2 4 x 2 4  mesh, and i t  was found that 
the choice xT = 8 was sufficiently large for any further increases in xT to have a 
negligible effect on the numerical solution. The cases involving axial mass fluxes 
through the ends of the cylinder were performed using 35 radial and 20 axial grid 
points and with xT = 11. For these cases a larger value of xT was required owing to 
the introduction and removal of mass high in the 'atmosphere', i.e. through the 
interval 7 6 x < 8. 

With the choice of parameters given above, the inhomogeneities of the mathematical 
problem for the mastor potential x are given by 

for the linear wall-temperature-drive case. For the mass-throughput cases we have 
that f(y) = 0 and g+(x) and g-(x) are determined from their definition in (2.53) and 
(2.54) respectively, with the choices u*(x)  = 0, $'(z) = 0 and 

for x <  1 and x >  8, 
2 - 1  for 1 < x < 2 ,  

8 - x  for 7 < x < 8 .  

F(.?-) = --x 
2A2 I: for 2 d x d  7, 

The parameters A ,  B. Re and S are easily determined from their definiticns, the 
centrifuge parameters of table 1 and choices for R, Ic and ,u corresponding to a 
particular gas. In  our ralculations the gas is chosen to be uranium hexafluoride. 

Figures 1-5 contain comparisons of the numerical solutions obtained with and 
without rctaining curvature terms in the model. i.e. comparisons of results obtained 
using the two choices for ~ ( x )  contained in (4.1). Each figure corresponds to o m  of 
the two methods of inducing a countercurrent flow and to a particular choice for the 
peripheral speed Qa. Three types of comparisons are provided in each figure. In  parts 
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FIGURE 1 (a )  Streamlines for linear wall-temperature drive at 400 m/s. ( b )  Axial mass flux versus 
radial position at y = tyT for linear wall-temperature drive at 400 m/s. (r) Cohen’s e and T Y ~  VPTSIIS 

axial position for linear wall-temperature drive at 400 m/s. 

(a)  of the figures we compare the level lines of the stream function +(x,  y ) .  The stream 
function is symmetric about the midplane y = i for all our cases ; therefore we show 
only the flow region y 2 $ for results obtained including curvature terms, and the flow 
region y < i for the corresponding case in which 7 has been set to unity. The second 
comparisons are provided in parts ( b ) ,  wherein profiles of the axial mass flux 
pow = exp (-2) w(z .  y ) ,  given in units of g m-2 s-l a t  a fixed axial position ( y  = ayT) 
are given. The final pictorial comparisons, contained in part ( c ) ,  are of eF(y) and m(y). 
The former, commonly referred to as ‘Cohen’s e ’ ,  is the flow-pattern efficiency and 
depends solely on the shape of the axial-velocity profile of the circulating gas. The 
latter, commonly referred to as ‘Cohen’s m ’ is a variable which is directly proportional 
to the upflow rate. Both quantities are determined from integrals of the axial mass 
flux. For the precise definitions of eF and m, and for a detailed discussion of the role 
they play in determining the separative performance and the design of centrifuges, 
see Soubbaramayer (1979), or Hoglund et al. (1979). Here we content ourselves by 
noting that it is desirable to have eF as large as possible and for m to have an optimal 
shape which will depend on the methods of introducing and withdrawing gas. 

Tables 2 4  provide a quantitative comparison of the numerical solutions obtained 
with and without retaining curvature terms. We let @c(x ,y )  and @o(x ,y )  denote 
respectively the stream functions of the flow fields obtained with and without the 
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0.10 

,Without curvature 
Cohen m 0.1 - - _, With curvature 

_.____-,Without curvature 1 
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zizo 
(C) 

FIGURE 2. ( a )  Streamlines for linear wall-temperature drive at 500 m/s. ( b )  Axial mass flux 
radial position at y = ;yYT for linear wall-temperature drive at 500 m/s. ( c )  Cohen's e and m 
axial position for linear wall-temperature drive at 500 m/s. 

versus 
versus 

inclusion of the effects of curvature. I n  table 2 we tabulate, for different values of 
the peripheral speed, the normalized root-mean-square difference 

To get a better idea of how the difference between 9, and $o are distributed around 
the flow field, in table 3 we give, for selected values of the peripheral speed, the 
following normalized root-mean-square differences : 

and 
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These provide information about how the difference between 4, and $" are 
distributed radially in the centrifuge. Xote that, owing to the different normalization, 
S,(x) measures a local difference relative to the global differcnce d,  while S,(T) 
measures a local differencc relative to the size of the stream function at  the same local 
position. 

Table 4 provides similar information for the axial distribution of the differences 
between $, and qko, i.e. 

and 

4.1. Discussion of numrrical results 
An examination of the pictorial and tabular results first reveals the obvious. As the 
rotational speed Qa increases, the effects of curvature decrease. In  fact, we have not 
provided any figures for thc case of a linear wall-temperature drive with a peripheral 
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( C )  

FIGVRE 4. ( a )  Streamlines for mass-throughput drive at 500 m/s. ( b )  Axial mass flux versus radial 
position a t  y = :yT for mass-throughput drive at 500 m/s  (c) C'ohen's c and m versus axial position 
for mass-throughput drive at 500 m/s. 

speed of 700 m/s, because in this case the pictorial representation of the solutions 
obtained with and without the inclusion of the terms due to  cwrvature are essentially 
indistinguishable. 

A second fact tha t  is also immediately evident from the numerical rvsults is that  
the effects of csurvature are much more pronounced for the flow induced by the 
introduction and removal of mass through the ends of the centrifuge than for the flow 
induced by a temperature gradient along the cylindrical wall of the centrifugc. This 
is most probably due to  the fact that ,  in the former case, we are introducing and 
removing mass through openings located between 7 and 8 scale heights so that  a more 
significant portion of the total mass of fluid in the centrifuge is found in regions amay 
from the wall. This is clear from the streamline and axial-mass-flux plots. So te  
especially the substantial differences in the solutions obtained with and without 
curvature terms for the mass throughput case with Oa = 400 m/s. 

For example, one of the more prominent differences is illustrated by the axial- 
mass-flux profiles with and without curvature for the mass throughput case with 
Oa = 400 m/s  shown in figure 3 ( b ) .  This figurc shows the profiles a t  y = $yo, one 
quarter of the rotor length measured from the bottom. Similar plots of calculated 
profiles closer to  the bottom rcvcal that ,  just outsitlc the Ekman layer, the with and 
without curvature profiles are the same exwpt  for a radial shifting and the extra hump 
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(c ) 
FIGURE 5.  ( a )  Streamlines for mass-throughput drive at 700 m/s. ( b )  Axial mass flux versus radial 
position at y = byT for mass-throughput drive at 700 m/s. (c) Cohen's e and m versus axial position 
for mass-throughput drive a t  700 m/s. 

Peripheral 
speed S2a d for LWT d for MT 
400m/s  0.051 0.301 
500 m/s 0.039 0.173 

TABLE 2. Normalized root-mean-square difference in the stream function computed with and 
without the inclusion of curvature terms; LWT = linear wall-temperature drive, M T  = mass- 
throughput drive 

700 m/s 0.013 0.055 

shown in figure 3 ( b )  is present in both cwrves but is further from the rotor wall at 
about 7 scale heights. As the distance from the end of the rotor increases, the hump 
moves toward the rotor wall in both cases, but the amplitude decreases more rapidly 
in the without-curvature case until i t  has disappeared a t  +yo. At the peripheral speed 
of 400m/s, the hump in the with-curvature case persists throughout the rotor. 
Calculations performed for higher peripheral speeds of 500 and 700 m/s reveal the 
same feature except the hump has decayed from both profiles within the first 10 o/o 
of the rotor length. This behaviour has also been observed in similar mass-throughput 
calculations based on finite-difference solutions. 
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LWT (Qa = 400 m/s) MT(Qu = 40 m/s) MT(Qa = 700 m/s) 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

81 
0.0388 
0.0210 
0.0149 
0.0125 
0.0065 
0.0027 
0.0012 

0.059 
0.442 
0.332 
0.398 
0.407 
0.405 
0.547 

8, 8 2  
0.084 1.250 
0.087 0.325 
0.210 0.448 
0.050 0.084 
0.110 0.228 
0.104 0.354 
0.062 0.392 
0.028 0.505 
0.01 1 0.546 
0.003 0.567 

81 

0.0228 
0.0295 
0.0324 
0.0215 
0.0105 
0.0057 
0.0036 
0.0008 
0.0003 
0.0001 

8 2  

0.0392 
0.0447 
0.0729 
0.1019 
0.0867 
0.0622 
0.0715 
0.0449 
0.0560 
0.0855 

TABLE 3. Radial distribution of the differences between *c and k0;  Qa = peripheral speed, 
LWT = linear wall-temperature drive, MT = mass-throughput drive 

LWT (aa  = 400 m/s) MT (Qa = 400 m/s) MT ( a a  = 700 m/s) 

Y €1 €2 €1 €2 €1 €2 

0 0.0300 0.1358 0.0525 0.0559 0.0178 0.0235 
1 0.0518 0.0507 0.3121 0.3102 0.0537 0.0517 
t 0.0608 0.0470 0.3895 0.3754 0.0594 0.0578 

TABLE 4. Axial distribution of the differences between $c and $,,; Qa = peripheral speed, 
LWT = linear wall-temperature drive, MT = mass-throughput drive 

z 

Insofar as the radial and axial distributions of the stream functions are concerned, 
not many general trends seem to be evident from the figures on tables 3 and 4 and 
from other calculations. For example, for the linear wall-temperature drive, e2(y) 
seems to be largest near the centre of the centrifuge (i.c. y = i), while for the 
mass-throughput drive it is largest near the ends. On the other hand, el(y) seems to be 
consistently larger near the centre of the centrifuge. This is probably due to the fact 
that  the total mass flow through planes y = constant is greatest for y = f. The result,s 
for S,(x) and S,(x) are even less consistent; however, it  is clear that they depend 
heavily on the number of cells in the flow. For example, compare the double peak 
in the distribution of 6,(x) for the case MT (Qa = 400 m/s) with the results for the 
other cases of table 3. Then note the multicelled flow of figure 3 ( a )  and the single-celled 
flows of figures 1 ( a )  and 5 (a) .  

5. Conclusions 
The results obtained indicate that the inclusion of terms that account. for the effects 

of curvature in the model equations governing the flow in rapidly rotating centrifuges 
can have a significant effect on the resulting solutions. This is especially truc at  
relatively low rotational speeds and for other cases where large amount's of mass arc 
found in flow regions away from the wall of the centrifuge. Of course, the particular 
gas being considered determines the stratifications, so that these effects could also 
be studied a t  a fixed rotational speed for gases of various molecular weights. 

The finite-element technique, used to obtain approximate solutions of the 
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governing equations, is as easily implemented when curvature terms are retained as 
when they are not. Also, the accuracy of the numerical solution is not significantly 
affected. Therefore use of the finite-element technique to determine the flow field in 
the centrifuge enables one to discard, without penalty, the ‘pancake’ assumption in 
the Onsager model. Still to be determined are the effects of curvature on flows driven 
by sources or sinks of mass, momentum and energy and subsequently, the effects of 
curvature on the separative performance of gas centrifuges. Again, it seems that the 
use of finite-element techniques will make such studies easily accessible. 

This work, as any dealing with flows in gas centrifuges, owes a great deal to the 
work of George Carrier, Stephen Maslen and, of course, to the late Lars Onsager. The 
authors also wish to express their appreciation to Edward Von Halle for his many 
insightful comments. 

This work was supported by the U.S. Department of Energy under Contract 
UE-AC05-82OR20900. 
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